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ABSTRACT

GROUND MOTION TO INTENSITY CONVERSION EQUATIONS
(GMICESs) FOR TURKIYE: EVALUATION OF REGIONAL
DIFFERENCES WITH PARAMETRIC AND NON-PARAMETRIC
REGRESSION METHODS

Albayrak, Kubilay
Master of Science, Earthquake Studies
Supervisor: Prof. Dr. Aysegiil Askan Giindogan
Co-Supervisor: Assist. Prof. Dr. Fatma Yerlikaya Ozkurt

January 2023, 97 pages

Earthquakes cause damage to the built environment with the ground motions
generated due to seismic energy release. Effects of earthquakes can be measured
quantitatively through instrumental measures such as peak ground acceleration
(PGA) and peak ground velocity (PGV) or qualitatively by macroseismic (felt)
intensity levels. It is important to study the correlations between macroseismic
intensity and instrumental ground motion parameters. Such relationships for Tiirkiye
exist but they mostly have employed relatively limited datasets. In this study, three
sets of data from Tiirkiye are employed: The first one is from the Aegean-
Mediterranean Region, the second is from tectonic regions in Tirkiye with
dominantly strike slip mechanisms, and the third is the combination of these two
datasets. These datasets are gathered to correlate the ground motion parameters with
felt intensity levels, and to study potential regional differences. The entire dataset is

composed of 69 earthquakes of which instrumental ground motion data and intensity



data are available. Initially, the relationships between Modified Mercalli Intensity
(MMI) and log (PGA) as well as log (PGV) are studied with linear regression method
using 3140 data pairs of MMI and PGA&PGV. Next, Principal Component Analysis
(PCA) is performed for 2187 data points composed of magnitude (Mw), PGA
(cm/s?), PGV (cm/s), peak ground displacement (PGD) (cm), epicentral distance
(km), significant duration (D_5_95), Arias intensity (m/s), focal depth (km), average
30-meter shear wave velocity (Vs30) (m/s), and the number of responses to select the
parameters which most influence MMI levels. Based on the results of PCA, multiple
linear regression is then performed with explanatory variable couples of PGA and
epicentral distance as well as PGV and epicentral distance where MMI is the
response variable. Finally, to study potential non-linearities in the data, the
multivariate adaptive regression splines (MARS) method is used via piecewise linear
functions. Not only the relationships are derived but also regional differences are
captured with the analyses performed in this study. The presented equations can be
used for ShakeMap applications and disaster management considerations in the

future.

Keywords: Felt-Intensity, Parametric and Non-Parametric Regression methods,

Tiirkiye, Regional Evaluation, Modified Mercalli Intensity
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TURKIYE ICIN YER HAREKETINDEN SIiDDETE DONUSUM (YHSD)
DENKLEMLERI: BOLGESEL FARKLARIN PARAMETRIK VE
PARAMETRIK OLMAYAN REGRESYON YONTEMLERIYLE
DEGERLENDIRILMESI

Albayrak, Kubilay
Yiiksek Lisans, Deprem Calismalari
Tez Yoneticisi: Prof. Dr. Aysegiil Askan Giindogan
Ortak Tez Yoneticisi: Dr. Ogr. Uyesi Fatma Yerlikaya Ozkurt

Ocak 2023, 97 sayfa

Depremler, sismik enerji salinim1 nedeniyle olusan yer hareketleri ile ¢evreye zarar
vermektedir. Depremlerin etkileri, niceliksel olarak maksimum yer ivmesi (MYT) ve
maksimum yer hiz1 (MYH) gibi aletsel Olciimlerle veya niteliksel olarak
makrosismik (hissedilen) siddet seviyeleriyle olgiilebilir. Makrosismik siddet ile
aletsel yer hareketi parametreleri arasindaki korelasyonlar1 incelemek Snemlidir.
Belirtilen iliskiler Tiirkiye i¢in literatiirde mevcuttur, ancak bu ¢alismalarda nispeten
smirli veri setleri kullanilmistir. Bu ¢alismada ise Tiirkiye'den iic veri seti
kullanilmistir: Birincisi Ege-Akdeniz Bolgesi'nden, ikincisi Tiirkiye’de dogrultu
atim mekanizmalarinin baskin oldugu tektonik bélgelerden ve {iciinciisii bu iki veri
setinin birlesiminden olugmaktadir. Bu veri kiimeleri, yer hareketi parametrelerini
hissedilen siddet seviyeleriyle iliskilendirmek ve potansiyel bolgesel farkliliklar
tanimlayabilmek icin olusturulmustur. Tiim veri seti, aletsel yer hareketi verileri ve

siddet verileri mevcut olan 69 depremden olusmaktadir. Ilk olarak, degistirilmis

vii



Mercalli siddeti (DMS) ile log (MYI) ve log (MYH) arasindaki iliskiler, her biri
3140 veri ¢iftinden olusan DMS ve MY1 ve DMS ve MYH parametreleri kullanilarak
dogrusal regresyon yontemi ile incelenmistir. Ardindan, depremin biiyiikligii (Mw),
MYI (cm/s2), MYH (cm/s), maksimum yer degistirme (MYD) (cm), dis merkez
mesafesi (km), belirgin stire (D 5 95), Arias yogunlugu (m/s), odak derinligi (km),
ortalama 30 metrelik kayma dalgasi hiz1 (Vs30) (m/s) parametrelerinden olusan 2187
veri noktast dikkate alinarak MMI seviyesini en ¢ok etkileyen parametreleri
tanimlayabilmek i¢in temel bilesen analizi (TBA) yapilmistir. TBA'nin sonuglarina
dayanarak, MMI seviyesinin tanimlanabilmesi i¢in agiklayici degisken olarak
tanimlanan MY I-dis merkez mesafesi ve MMI ile MY H-d1s merkez mesafesi ciftleri
ile ¢oklu dogrusal regresyon gergeklestirilmistir. Son olarak, verilerdeki potansiyel
dogrusal olmama durumlarini incelemek ig¢in, pargali dogrusal fonksiyonlar
araciligtyla ¢cok degiskenli uyarlanabilir regresyon egrileri yontemi kullanilmastir.
Bu calismada yapilan analizlerle sadece siddet ve yer hareketi parametreleri
arasindaki iliskiler tiiretilmemis; ayn1 zamanda bolgesel farkliliklar da yakalanmistir.
Sunulan denklemler gelecekte ShakeMap uygulamalari ve afet yonetimi kararlarinda

kullanilabilecek niteliktedir.

Anahtar Kelimeler: Hissedilen siddet, Parametrik ve Parametrik olmayan Regresyon

Y ontemleri, Bolgesel Degerlendirme, Degistirilmis Mercalli Siddeti (MMI)
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CHAPTER 1

INTRODUCTION

An earthquake causes sudden release of seismic energy resulting in seismic waves
travelling through the earth. Effects of earthquakes can be measured quantitatively
through instrumental measures such as peak ground acceleration (PGA), and peak
ground velocity (PGV) or quantitatively by macroseismic (felt) intensity levels.
Before the advance of digital seismometers, felt intensity was the sole expression of
ground shaking levels and effects on buildings. Nowadays, it is important to study
the correlations between macroseismic intensity and instrumental ground motion
parameters since such correlations are critical inputs for disaster management and

risk reduction purposes.

Macroseismic intensity levels which express the level of shaking can be defined in
the field via reconnaissance surveys after earthquakes by experts or through online
questionnaires such as “Did You Feel 1t?” system by USGS. (Wald et al. 1999-b,
Boatwright and Phillips, 2012). There are alternative intensity scales to Modified
Mercalli Intensity (MMI) in the literature, but the most common intensity scale is
MMI followed by the European Macroseismic Scale (EMS-98), and the Japanese
Meteorological Agency Scale (JMA).

Following the early studies of Giuseppe Mercalli, MMI was modified in 1931 by
Wood and Neumann (Wood and Neumann, 1931). Since the original scale was not
compatible with the ground motion-related intensity measurements, especially for
higher intensity levels, the full-length scale was later modified by Stover and
Coffman in 1993 (Stover and Coffman, 1993). Roman numerals are used to define
the intensity levels, which is described in a range from undetectable shaking to

catastrophic destruction. The intensity levels through MMI are in a range between |



and XII where X+ corresponds to total destruction. The detailed definitions of

intensity levels are shown in Appendix A.

Although the responses for intensity level measurements are naturally subjective as
they rely on human reporting, correlations between ground motion parameters with
intensity levels are used to intervene quickly after an earthquake in order to define
the areas of potential damage. ShakeMap applications are now in use to visually
assess the spatial distributions of intensity levels for earthquakes all over the world.
Such maps require well-defined correlations of the intensity levels with instrumental
ground motion parameters. These correlations should be based on regional datasets
since both intensity and ground motion parameters carry local characteristics. Such
relationships for Tiirkiye exist (e.g.: Arioglu et al. 2001; Bilal and Askan, 2014) but
these studies have mostly employed relatively limited datasets. In this study, novel
ground motion to intensity conversion equations are derived using three sets of data

from Tiirkiye along with parametric and non-parametric regression methods.

1.1  Objective and Scope of the Thesis

This thesis aims to study the relationships between ground motion parameters and
macro seismic or felt intensity for earthquakes which occurred in Tiirkiye within the
instrumental era. To fulfill this objective, in this study, three sets of data from
Tiirkiye are employed: First one is from the Aegean-Mediterranean Region, second
is from tectonic regions with dominantly strike-slip mechanisms and third is the
combination of these two datasets. These datasets are gathered to correlate the
ground motion parameters with felt intensity levels and study potential regional
differences. The entire dataset is composed of 69 earthquakes of which instrumental
ground motion data and intensity data are available. Alternative methods used in this
thesis include simple linear regression, PCA, multiple linear regressions and MARS

approaches.



The main objective of this study is to develop regression models to estimate MMI as
a function of measured or computed ground motion parameters. These equations are
named as ground motion to intensity conversion equations (GMICES). In this study,
the ground motion dataset is obtained from the Turkish National Strong Ground
Motion Database operated by AFAD (www.tadas.afad.gov.tr ) while the intensity
dataset is gathered from USGS-DYFI. Intensity data available from field surveys of
past earthquakes are not used in this study for sustaining the homogeneity of the
USGS-DYFI database.

In Chapter 2, the literature survey is represented where the previous studies are

reviewed in detail.

In Chapter 3, the available dataset that is used for this study is described. The
databases of instrumental ground motion parameters and intensity are defined.

In Chapter 4, the methodologies used in this thesis are defined in detail. Linear
regression, PCA, multiple linear regression and MARS models are discussed in
detail.

In Chapter 5, the numerical results of this thesis are presented. The resulting
GMICEs are compared with previous studies, and the regional differences are

discussed in detail.

In Chapter 6, the summary and conclusions of this thesis are presented. The

recommendations for further studies are also listed.






CHAPTER 2

LITERATURE REVIEW

2.1 General

Predictive relationships between macroseismic intensity scales and instrumental
parameters are common worldwide. However, the most common correlations are
based on MMI-PGA and MMI-PGV pairs. In this section, the previous studies are
discussed briefly.

2.2  Review the Most Commonly Used Past Relationship between Felt

Intensity and Instrumental Ground Motion Parameters

2.2.1 Trifunac and Bready (1975)

Trifunac and Brady (1975) carried out a correlation analysis between Modified
Mercalli Intensity (MMI) and PGA, PGV, and PGD. The dataset in this study
comprises 57 earthquakes and 187 strong motion accelerograms recorded in the
Western United States. The analyses in that study are valid for the MMI values
between V and VIII. Three local geological conditions of soft, intermediate, and hard
are used to correlate MMI with peak ground motion values. PGA is used for stiffer

soil conditions where PGV is employed for softer soil conditions.

2.2.2 Murphy and O’Brien (1977)

Murphy and O’Brien (1977) conducted a correlation analysis between Modified
Mercalli Intensity and PGA. The dataset in that study comprises 875 data points

measured from nearly 1500 strong motion accelerograms worldwide so the resulting



equations are available for use all over the world. The PGA values lower than 10
cm/s? PGA are not included in that study since the authors believe that this
elimination reduces uncertainty of the dataset. The results show that PGA is not
directly proportional to the intensity level and PGV is suggested to be used in the

future for intensity correlations.

2.2.3 Wald et al. (1999-a)

Wald et al. (1999-a) conducted a regression analyses between Modified Mercalli
Intensity and PGA & PGV. The dataset is composed of data from eight California
earthquakes, which are the 1971 (M 6.7) San Fernando, the 1979 (M6.6) Imperial
Valley, the 1986 (M 5.9) North Palm Strings, the 1987 (M 5.9) Whittier Narrows,
the 1989 (M 6.9) Loma Prieta, the 1991 (M 5.8) Sierra Madre, the 1992 (M 7.3)
Landers, and the 1994 (M 6.7) Northridge Earthquake due to their well-recorded
regional strong-motion records with relatively higher intensity observations. The
MMI-PGA relationship in that study is valid between MMI levels of VV and VI1II, and
while the MMI-PGV relationship is valid between MMI levels of V and IX. It is
suggested by the authors that the MMI-PGA correlation equation should be used for

lower MMI values whereas MMI-PGV correlation equation for higher MMI values.

224 Atkinson and Sonley (2000)

Atkinson and Sonley (2000) conducted a correlation analysis between Modified
Mercalli Intensity and 5% damped Pseudo Spectral Acceleration. The study dataset
comprises 29 California earthquakes with a moment magnitude range from 4.9to 7.4
and distance range of 1 to 300 km. The authors conclude that magnitude is also a
dependent parameter of MMI at low frequencies of PSA while distance becomes
important at higher frequencies.



2.2.5 Ario8lu et al. (2001)

Arioglu et al. (2001) conducted a correlation analysis between Modified Mercalli
Intensity and PGA. The study database is composed of 14 strong ground motion
records of the 17 August 1999 Kocaeli Earthquake. Although this study is valuable
being the first local ground motion to intensity conversion equation for Tiirkiye, the
results are not considered to be sufficiently robust and general due to the limited

strong ground motion dataset.

2.2.6 Boatwright et al. (2001)

Boatwright et al. (2001) conducted a correlation analysis between Modified Mercalli
Intensity with PGA, PGV, and PSv ordinates at 14 different period values ranging
between 0.1 to 7.5 seconds. The database comprises data from 66 free-field strong
ground motion stations that recorded the 1994 Northridge Earthquake (Mw 6.7). The
authors conclude that PGV and average PSv are better correlated with MMI than
PGA. Additionally, the MMI-PGV correlation provides lower uncertainty than the
average MMI-PSv correlation.

2.2.7 Karim and Yamazaki (2002)

Karim and Yamazaki (2002) conducted a correlation analysis between Japan
Meteorological Agency (JMA) seismic intensity with PGA, PGV, and Sl. The
database is composed of two datasets. The first dataset includes 13 major
earthquakes, which occurred in Japan, the United States, and Taiwan, with 879
records obtained at sites located on non-liquefied soils. Second database includes 7
seven major earthquakes, which occurred in Japan and the United States, with 17
records obtained at sites located on liquefied soils. A two-stage linear regression
analysis is used in this study. The correlation coefficient is found to be the highest

for Sl, and for multivariate analysis, the SI-PGA pair has a higher correlation



coefficient than the PGA-PGYV pair. Additionally, PGV is concluded to be the lowest

correlation parameter for JMA intensity estimations.

2.2.8 Wu et al. (2004)

Wau et al. (2004) conducted correlation analyses between Modified Mercalli Intensity
and PGA, Sa at 1 second, and PGV. The database is composed of 30000 strong
ground motion records. The authors conclude that PGA and Sa have a higher
correlation with MMI than PGV. However, PGV and Sa at 1s have a better
correlation with MMI than PGA, which is not observed to be stable for small

earthquakes.

2.2.9 Kaka and Atkinson (2004)

Kaka and Atkinson (2004) conducted a correlation analysis of the Modified Mercalli
Intensity with PGV, and Sa at 1, 5, and 10 Hz. The database comprises post-1982
earthquakes from eastern North America, with moment magnitude values ranging
between 3.6 to 7.25. The study employs 232 MMI-PGV data pairs and 199 MMI-
PSA pairs. For regression analyses, linear least squares regression method is used in
this study. The authors conclude that PGV is the best parameter to estimate MMI
values for ShakeMap applications due to the lowest uncertainty in predictions.

2.2.10 Atkinson and Kaka (2006)

Following their previous study, Atkinson and Kaka (2006) later conducted a
correlation analysis between Modified Mercalli Intensity and PGA, Sa at 0.5, 1, and
3.3 Hz, and PGV. The database comprises 22 New Madrid Seismic Zone earthquakes
calibrated from California ShakeMap/DYFI data. The authors conclude that the

MMI-PGV correlation is the most reliable one. The uncertainty due to magnitude



dependency of PGV and PSa (at 0.5 and 1 Hz) as well as the distance dependency of
PGA and PSa (3.3 Hz) are minimized by including these trends in correlation

equations.

2.2.11 Atkinson and Kaka (2007)

Atkinson and Kaka (2007) conducted a correlation analysis between Modified
Mercalli Intensity and PGA, PGV, and Spectral Acceleration at 0.5, 1, and 3.3 Hz.
This study provides two equations for lower and higher value of 0.48 for log (PGV).
The database comprises the Central United States Region and the earthquakes,
calibrated from California ShakeMap/DYFI Data. The authors conclude that the

refined results based on PGV are a reasonable choice for predictive equations.

2.2.12 Tselentis and Danciu (2008)

Tselentis and Danciu (2008) analyzed the correlation between Modified Mercalli
Intensity with PGA, PGV, PGD, Arias Intensity, and Cumulative Absolute Velocity.
The database is composed of 89 Greek earthquakes with 310 ground motion records
from the earthquakes which occurred between 4 November 1973 and 7 September
1999. The characterizations of the ground motions are defined as short duration, low-
energy content, and high frequency. In this study, two empirical relationships are
developed. For the first relationship, the magnitude and epicentral distance are
excluded for MMI prediction. For the second relationship, the entire dataset is used
for the calculations. The authors conclude that Arias Intensity exhibits the lowest
standard deviation in the first model while PGA shows similar performance in the
second model. The local site effects, which are included in the calculation with a
dummy variable, slightly affects the prediction of MMI. The magnitude and
epicentral distance are the main dependent variables with PGA to estimate MMI.



2.2.13 Faenza and Michelini (2010)

Faenza and Michelini (2010) conducted a correlation analysis between Mercalli-
Cancani-Sieberg (MCS) Intensity and PGA as well as MCS and PGV. The
orthogonal distance regression technique is used in this study. The database is
composed of 66 earthquakes between 1972 and 2004 within the range of 3.9 to 6.9-
moment magnitude with 266 pairs of Intensity-PGM data. The authors conclude that
the correlation analysis does not depend on earthquake magnitude and source-to-site
distance.

2.2.14 Yaghmaei-Sabegh, Tsang, and Lam (2011)

Yaghmaei-Sabegh, Tsang, and Lam (2011) conducted correlation analyses between
Modified Mercalli Intensity and PGA, PSa, and PGV. The dataset comprises data
from 10 earthquakes between 1978 and 2003 recorded in the Iranian Plateau with a
moment magnitude range of 4.4 to 7.4. The authors conclude that the MMI-PGV

correlation has the lowest residual variance.

2.2.15 Alvarez et al. (2012)

Alvarez et al. (2012) conducted a correlation analysis between macroseismic
intensity and PGA, PGV, moment magnitude, and epicentral distance. Alternative
methods including Support Vector Regression, Multilayer Perceptrons, and Genetic
Programming are employed in this study. The dataset is composed of ground motions
from the 1989 Loma Prieta earthquake, the 1992 Petrolia earthquake, and the
California earthquakes which occurred after 2000, with a total of 843 ground motion
records from 63 earthquakes. The authors conclude that the Multilayer Perceptron
method is the most effective approach for the nonlinear correlation of macroseismic

intensity and ground motion parameters.

10



2.2.16 Bilal and Askan (2014)

Bilal and Askan (2014) conducted a correlation analysis between Modified Mercalli
Intensity and PGA as well as PGV. The database comprises 14 earthquakes with a
moment magnitude range from 5.7 to 7.4 forming 92 MMI-ground motion pairs. The
linear least regression method is used in this study to present two sets of equations.
The first set of equations is simple regression between MMI and PGA, PGV, as well
as PSa at ordinates of 0.3, 1, and 2 seconds. The second set is the refined equations
with addition of moment magnitude and epicentral distance to the independent
variables. The authors conclude that PGA is the main ground motion parameter to
predict MMI values for rigid structures while PGV correlates well with ductile
structures. This study is the first systematic GMICEs for Tiirkiye and is still in use

by international agencies to estimate MMI levels after earthquakes in Tiirkiye.

2.2.17 Caprio et al. (2015)

Caprio et al. (2015) conducted a correlation analysis between Modified Mercalli
Intensity and peak ground motion parameters, magnitude, and hypo central distance.
In this study, the correlation equations are presented for California, Greece, Italy,
New Madrid region in CEUS, and worldwide as well as altogether to signify
potential regional differences. The total dataset is composed of 2380 observations
for these regions. The MMI-PGM correlation pairs are arranged to be within a
maximum distance of 2 kilometers between the recorded ground motion stations and
the responses. The dataset comprises earthquakes with a magnitude range between
2.5 and 7.3 recorded between 1965 and 2005 from worldwide recorded ground
motions. The orthogonal regression technique is used in this study. The authors
conclude that MMI-PGV and MMI-PGA correlation pairs have regional
dependencies for magnitude and distance terms. It is also observed that the intensity
scale variations also affect the regional differences. The authors suggested to use

regional relationships whenever models can be calibrated regionally.

11



2218  Duetal. (2020)

Due et al. (2020) conducted a correlation analysis between Modified Mercalli
Intensity and PGA as well as PGV by novel probabilistic relationships. These
relationships assume that peak ground motion values are randomly distributed for
each MMI value following a normal distribution. The database is composed of 37
earthquakes that occurred in Western China between 1994 and 2017. Intensity maps
are plotted with the seismic intensity values calculated by the Bayesian formula, in
addition to standard deviation maps which are constructed through spatial
interpolation. The authors conclude that the probabilistic approach performs better

than the traditional methods in rapid estimation of earthquake intensities.

2.2.19 Ahmadzadeh et al. (2020)

Ahmadzadeh et al. (2020) conducted a correlation analysis between Modified
Mercalli Intensity and PGA as well as PGV. The database is composed of 23
earthquakes with moment magnitude range from 5.1 to 7.3 recorded between 1977
and 2017 in Iran. Least squares regression method is used in this study. The authors
conclude that in the first model, magnitude and distance are excluded, but the
residual analysis pointed out the dependencies on these parameters. Then, refined
predictive models are derived which cover these parameters in the study. The
predictive equations of this study have standard errors between 0.5 to 2 intensity

units.

2.2.20 Ardeleanu et al. (2020)

Ardeleanu et al. (2020) conducted a correlation analysis between Medvedev-
Sponheuer-Karnik Intensity Scale and PGA, PGV, PGD, Cumulative Absolute
Velocity, Arias Intensity, and Destructiveness Potential Factor. This study is valid

for intensity levels between V and VIII in the Carpathian bend zone. The database is

12



composed of 5 events with Mw > 6 that occurred in the Vrancea region during the
half past century. Simple least squares regression method is used in this study. The
authors conclude that the differences between this study and previous studies are due
to the different data sets. Although the dataset is limited, the linear regression method
is observed to be effective. Additionally, when the magnitude, distance, and
geological site conditions are excluded, Arias Intensity is found to be the most stable

predictor, and PGA has the most significant standard deviation.

2.2.21 Tao et al. (2020)

Tao et al. (2020) conducted a correlation analysis between macroseismic intensity
and sixteen different ground motion parameters including PGA, PGV, Arias
Intensity, Housner Intensity, Acceleration Spectrum Intensity, Velocity Spectrum
Intensity, and others. Support vector analysis is used as the main method in this
study. The dataset comprises 25 pairs of macroseismic intensity values and ground
motion parameters. The support vector regression results are valid for macroseismic
intensity values between VI to IX due to the high seismicity rate in the study region.
The authors conclude that PGA is the most critical parameter, and PGV is the fifth
important parameter among the nine parameters examined in this study. Different
than other studies with linear regression methods, in this study PGA is reported to
perform better than PGV in predicting macroseismic intensity. The Gaussian Kernel
Support Vector Analysis provides better accuracy percentage, correlation
coefficient, and performance measures of minimum average mean squared error than
the linear methods. Additionally, magnitude and epicentral distance are found to be

insignificant.

2.2.22 Gomez-Capera et al. (2020)

Gomez-Capera et al. (2020) conducted regression analyses between macroseismic
intensity and PGA, PGV, and PSaat 0.2, 0.3, 1, and 2 seconds. The dataset comprises
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67 earthquakes within a magnitude range from 4.2 to 6.8 between 1972 and 2016,
resulting in 240 macroseismic intensity-ground motion correlation pairs. The MMI
and ground motion data are paired within a range of 2 kilometers. The nonlinear form
of the logarithmic method is used to predict the intensities levels. The study is valid
for 11 < macroseismic intensity < X—XI and geometric values within a range 0.9 <
PGA (cm/s2) < 587. The uncertainty is around 1 unit for intensity values. Based on
to the residual analysis, the authors conclude that the regressions are not significantly
dependent on moment magnitude and epicentral distance. The lowest uncertainty
value is obtained for PGV, so it is concluded to be the best parameter to predict the

intensity for their dataset
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CHAPTER 3

AVAILABLE DATABASE

3.1 General

In this study, ground motion to intensity conversion equations are studied for three
regions of Tiirkiye, which are named as “Aegean-Mediterranean region”, “Strike-
Slip region in Tirkiye” and “Tiirkiye” which is the combination of these datasets.
The entire dataset is comprised of 69 earthquakes, which are presented in detail in
Appendix B, with 3140 MMI-peak ground motion parameter pairs for simple linear
regression and 2187 MMI-ground motion parameter data points for multiple linear
regression and MARS method. Instrumental ground motion parameters, which are
moment magnitude, peak ground acceleration, peak ground velocity, peak ground
displacement, focal depth, epicentral distance, significant duration and Arias
intensity are obtained from Disaster and Emergency Management Presidency of
Tirkiye (AFAD) while the corresponding intensity values The United States
Geological Survey (USGS) “Did you feel it?” (DYFI) system. These institutional
databases, study areas as well as the ground motion parameters used in this study

will be introduced in this chapter in detail.

3.2 AFAD Database

The AFAD database is Tiirkiye's official national strong ground motion database,

with data from approximately 750 stations (https://tadas.afad.gov.tr/). It provides

information about recorded earthquakes and the corresponding strong ground motion
stations which recorded the events as well as the instrumental ground motion

parameters. Moment magnitude (Mw), and focal depth (km) of an earthquake as well
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as epicentral distance (km), peak ground acceleration for all directions (PGA, cm/s?),
and 30-meter average shear wave velocity (Vs30, m/s) of the selected stations are
readily available parameters at the AFAD database. For the other instrumental
ground motion parameters of peak ground velocity (PGV, cm/s), peak ground
displacement (PGD, cm), Arias intensity (m/s), and effective duration (D_5 95,
second), an opensource MATLAB software code by Carlton (2005) was used. The
lack of V30 value at some of the strong ground motion stations in Tiirkiye reduced

the number of data points significantly from 3114 to 2171.

The faults in Tiirkiye as well as the earthquake distributions of the entire dataset are

presented in Figure 3.1. in Figure 3.2, respectively.

38°E

Figure 3.1 The faults in Tiirkiye
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Figure 3.2 The earthquakes used in this study

3.3 USGS-DYFI Database

USGS has a system called “Did you feel it?”, which is based on an internet-based
questionnaire to obtain the felt intensity levels after an earthquake from the public.

The link to the DYFI questionnaire is https:/earthquake.usgs.gov/earthquakes/eventpage/tellus.
DYFI page provides information on the intensity map, the plot of intensity as a
function of distance, the plot of responses as a function of time, and a table of DYFI
responses for each earthquake. The responses to the questionnaire are evaluated
based on the Community Decimal Intensities (CDI), which state the earthquake
effects over an area as a single intensity level, provided by Dengler and Dewey
(1998). The CDI is an aggregate of the weighted sums of the various indices of the
DYFI questionnaires composed of eight questions with weights and ranges. The
details are presented in Appendix C. The calculations are defined by Wald et al.
(2012) as follows:

1. Each answer is turned into a numeric value from 0 to 1.
2. The averages of all answers are calculated within specified community.
3. The community weighted sum (CWS) is formed by taking the weighted sum

of all averages.
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4. DYFI intensity level is calculated as follows:

CDI=3.40 In(CWS)-4.38 (3.1)

where CDI is rounded off to the first decimal place.

After estimating the regional intensities, DYFI maps are created within minutes for
a magnitude 1.9 or greater earthquake. Although DYFI maps are based on direct
reports of earthquake effects by the affected people, ShakeMaps are primarily based
on point location measurements of the ground motion parameters with seismic
intensity levels (Worden et al., 2010). Since DYFI data is compatible and consistent
with ShakeMaps, DYFI intensities are used to calibrate the equations used by
ShakeMap to convert ground motions into intensity levels (Boatwright and Philips,
2012).

In this study, the selected earthquakes from the AFAD strong motion database are
matched with the USGS database to exclude the ones that are not recorded by AFAD
stations to prevent instrumental ground motion parameter differences. Thus the
USGS database is only used for intensity levels. For data pairs, the instrumental
ground motion parameters are paired with the number of responses as well as
intensity levels within + 5 kilometers distance between ground motion station and
the DYFI response point. An example of MMI levels and the number of responses
from DYFI system of Elazig Sivrice Earthquake, 2020 is presented at Appendix D.

3.4  Study Areas

In this study, three regions, which are Aegean-Mediterranean, Strike-Slip, and
Tiirkiye as the entire region, are studied to define probable regional differences as
well as the relationships between felt intensity and instrumental ground motion
parameters. The description of Strike-Slip region is based on dominant focal

mechanism of earthquakes. The Aegean-Mediterranean region is defined according
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to density of earthquakes and the geographical region. Mostly normal and reverse

mechanisms are observed in this region.

The descriptive statistics for available datasets according to defined methods are
presented in Appendix E. Figure 3.3, show the boundaries of the regions in this study

while Table 3.1 and Table 3.2 list the city names in the regions.

42°N fim "‘W
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38°E 40°E

Figure 3.3 Boundaries of regions used in this study

Table 3.1 Cities that are used in the Aegean-Mediterranean Region database

Balikesir Manisa Kiitahya Afyon Izmir
Aydin Denizli Burdur Mugla Antalya
Konya Mersin Usak Isparta

Table 3.2 Cities that are used in Strike-Slip Region database

Adana Adiyaman | Agn Ankara Bilecik
Bingol Bursa Canakkale | Corum Diyarbakir
Edirne Elaz1g Erzincan Erzurum Eskigehir
Gaziantep Giresun Hatay Istanbul Kayseri
Kirklareli Kocaeli Malatya Kahramanmaras | Mardin
Ordu Rize Sakarya Samsun Sivas
Tekirdag Tokat Trabzon Tunceli Sanliurfa
Van Yozgat Batman Yalova Osmaniye
Diizce
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3.5  Ground Motion Parameters Used in This Study

The instrumental ground motion parameters that are used in this study are Moment
Magnitude (Mw), Epicentral Distance (km), Focal Depth (km), Peak Ground
Acceleration (PGA, cm/s?), 30-meter average shear wave velocity (Vs30, m/s), Peak
Ground Velocity (PGV, cm/s), Peak Ground Displacement (PGD), Arias Intensity,
and Effective Duration (D_5_95).

3.5.1 Moment Magnitude (Mw)

The moment magnitude is a quantitative measure of an earthquake magnitude
developed by Kanamori and Hanks (1979). The calculation of moment magnitude is
based on the seismic moment (Mo), which considers the fault geometry, material
rigidity at the fault level, and fault displacement for calculating the energy release
caused by an earthquake. Therefore, moment magnitude is indeed the only
magnitude scale to measure earthquake magnitudes most reliably. The moment

magnitude is defined in terms of the seismic moment as follows:
Mw == log Mo — 10.7 (3.2)

Mo=DAp (3.3)

where Mo is the seismic moment, D is the average fault displacement, A is the total

area of the fault surface, and p is the average rigidity.

3.5.2 Epicentral Distance and Focal Depth

Epicentral distance is defined as the distance on the ground surface between the site
and the focus of an earthquake, which is the point that an earthquake occurs on the

seismic source. Focal depth is the closest distance between the focus and the ground
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surface. Figure 3.4 shows the visual descriptions of epicentral distance and focal
depth.

STATION

- GROUND SURFACE

[l
VEPICENTRAL DISTANCE

HLdAd 1VD04d

EARTHQUAKE

Figure 3.4 Visual description of epicentral distance and focal depth

3.5.3 Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV),
and Peak Ground Displacement (PGD)

Peak ground acceleration, peak ground velocity, and peak ground displacement are
defined as the maximum acceleration, velocity, and displacement of the ground due
to strong ground motion of an earthquake, respectively. Since the earthquake shaking
occurs in three directions, these parameters are expressed in three directions, which
are North-South, East-West, and Up-Down. In this study, the pre-processed strong
ground motion records of AFAD are used to compute PGA, PGV, and PGD in
horizontal directions. Then, the parameters are defined as a single PGA, PGV, and
PGD value for each strong motion record by taking geometric means of the

corresponding horizontal components.
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354 30-meter Average Shear Wave Velocity (Vs30)

Vs30 is defined as the time-averaged shear-wave velocity to a depth of 30 m. As of
now, it is the globally accepted site proxy which provides unambiguous definitions
of site classes for building codes and site coefficients for site dependent response

spectra.

355 Arias Intensity (Ia)

Arias Intensity is an indicator for the energy content of ground motions including
both the duration and the amplitude of the whole ground motion time history (Arias,
1970). The principal assumption of Arias Intensity is that the amount of damage
experienced by a structure is proportional to the energy dissipated by the structure
per unit weight during the overall duration of the earthquake-induced motion (Arias
1970).

The Arias Intensity is defined as follows:

1a=2“—gI [a(t)]?dt (3.4)

where a(t) is the acceleration in m/sec?, g is the acceleration of gravity, and la is the

Arias intensity in m/sec.

3.5.6 Significant Duration (D_5_95)

Significant duration is the time between 5% and 95% of Arias Intensity (Trifunac
and Brady,1975). It measures the damage potential during an earthquake by Husid
plots, which show the buildup of the energy of an accelerogram with time and the
time interval for 5 to 95 percent energy buildup. Local site conditions, distance from
the station and the source, and fault characteristics are the main parameters that affect
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the significant duration. Figure 3.5 shows the computation of Significant Duration

from Husid Graph.

0.2 —

0.0

Acceleration (m/s?)

-
>

P e T -

D;5.95=tg5-ts

| ] | | | | |
0 20 40 60 80 100 120 140 160 Time (s)

Intensity Relation 1,(t)/1,

et
=

Figure 3.5 The computation of the significant duration from Husid Graph
(modified from Husid,1969)
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CHAPTER 4

METHODOLOGY

4.1 General

In this thesis, simple linear regression, multiple linear regression, principal
component analysis, and multivariate adaptive regression splines are used as the
main statistical approaches. The objectives are twofold: First one is to select the most
influential parameters on intensity levels and second is to define the conversion
relationships using the selected parameters between each pair of datasets in terms of

linear considerations.

4.2 Linear Regression

Linear regression, which is a parametric regression method, is used to estimate the
relationships between a dependent variable (also called response or outcome
variable) and one or more independent variables (also called predictors or
explanatory variables) in terms of their linear combinations. The regression analysis
has a descriptive purpose and a predictive purpose. The descriptive purpose is to
derive arelationship between the predictor and the response variables. The predictive
purpose is to estimate the response variable based on the value of predictors.
Regression analysis aims to fit a model to an input data by minimizing the differences
between the actual response variable and the estimated response variable. The
response variable is estimated by the best fit of a line. The error is defined in terms
of least squares, where the squared difference between the actual and modeled values
are minimized. Least square minimization is used both for simple and multiple linear

regression models.
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This study uses simple linear regression to obtain relationships between log (PGA)-
MMI and log (PGV)-MMI pairs. The dataset is composed of 3140 data pairs for each
correlation. For multiple linear regression, MMI is obtained by the predictor
variables of PGA&epicentral distance and PGV&epicentral distance pairs. The

dataset is composed of 2187 seismic parameter pairs for each correlation.

4.2.1 Methodology

Multiple linear regression involves the prediction of the response variable (Y) based
on two or more predictor variables (Xi, Xz, ..., Xp). The model form is defined as

follows:
Y; = By + B Xy + ByXp + -+ € (4.1)
where
Y;: the it (i = 1,2, ..., n) response value
B,:the intercept of the least-squares regression line on the response axis
B;: the regression slope for the i"(j = 1,2, ...,p) independent variable
Xj;: the i" value of the j™ independent variable
€;: the i random error value

Based on a normal distribution of the residuals, the linear form of the simple linear

regression is rearranged as follows:
Y = Normal(b; X+ by, €) (4.2)

where b, is the slope of the least-squares regression line, b, is the intercept and € is

the standard deviation of the variation of Y.
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The coefficient of variation (R?), which determines how well the dataset is fitted
through the regression line, is the proportion of variance in the response variable ()
that is predicted by the independent variable. Since R?is the proportion of variance,
it takes values between 0 and 1, where 1 is the theoretical best fit of data to regression
line and 0 means the data does not fit properly. The coefficient of variation is defined

as follows:
RZ=1-2= (4.3)
TSS: the total sum of squares and defined as follows:
1SS = N, (%~ 7)? (44)
Y: the mean of the response variable

SSE: the sum of squares of errors and defined as follows:

SSE = Zk_ (v, - 7) (4.5)

Y thei (i = 1,2,..,N) estimated value of the response variable and it is defined

as follows:
Y ,=mX;+n (4.6)

The standard error of the estimated response parameter (Y), o, is defined in Equation
4.7.

_ | oen?
o = W (4-7)
The standard deviation of the residuals or error terms is assumed to be equivalent to
the standard error of the estimated response parameter. This is only valid for normal
distribution of variables. Additionally, the correlation coefficient or Pearson’s R is

equal to the square root of the coefficient of variation.
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4.3  Principle Component Analysis (PCA)

Principle component analysis (PCA) is a technique where high dimensional data is
represented in a lower dimensional form while preserving the maximum amount of
information. The methodology is based on a linear transformation of an initial dataset
from n dimensional space to another space that has the same number of dimensions,
which is composed of principal components that are completely uncorrelated and

orthogonal or perpendicular to each other (Wang, 2008).

Principal components are obtained by the maximization of the variances that is
assumed to contain the largest information of the initial dataset. Hence, the first
principal component has the largest variance and the consecutive principal
components have lower variances. On one hand they do not have any real meanings
since they are constructed as linear combinations of the initial variables, on the other
hand the contributions of variables for each principal component state the most

influential parameter.

In this study, PCA is performed to reduce the complexity and the computational cost
of multiple linear regression by defining the most influential variables that are
completely uncorrelated to each other.

4.3.1 Methodology

PCA is a matrix operation-based computing method, therefore the dataset is formed
in a matrix, where rows and columns are composed of the number of samples and
variables, respectively. A sample matrix composed of p columns and n rows is

defined as follows:

Xy v Xy
x:[i ] (4
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where, x;; is the predictor data, i is the index for the variables i= 1, 2....,n, and j
is the index for the numerical value of the variables for the defined response

variable and j=1, 2...., p.

PCA is a sensitive analysis. Thus, the initial dataset has to be analyzed on similar
measurement scales. Therefore, to prevent the scaling effects especially for lower
variance principal components, standardization of initial dataset is the most
important step before analysis. Additionally, if all the variables used in PCA are
measured on the same scale, the centering of the data, which is subtracting the mean
from each variable, is used instead of standardization.

Standardization is defined as subtracting the mean values from each variable and
dividing the result by the standard deviation. The mathematical formula is defined

as follows:

(X11 — X)o7 - (Mp‘@)/ap

Xsta = (4.9)

(Xp1 —x1) /01 - (xnp - @)/o—p
where X, is the standardized value matrix, x;; is the observed value, X, is the mean
of jth variable, and o; is the standard deviation of the jth variable. The standardized
data has a mean of zero and a standard deviation of one for each variable. The X; is

computed as follows:
— 1 .
X =YXV j (4.10)

Additionally, the square of the standard deviation is defined as variance, and after
the standardization of the variables, each variable has a variance of one. The variance

is defined as follows:

1 —_ .
=02 = — ¥l (xij — %)V (4.11)

n—1
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The relationship between parameters is defined by the correlation matrix, which is
obtained by the matrix operations. The correlation matrix from standardized dataset
is defined as follows:

Xeor = thdXstd =1: : (4-12)

C

1
n-—1
pl

where, ¢;; is the correlation coefficient between x; and x; parameters for

(i=12,...,p) and (j =1,2,..,p).. The correlation coefficient is defined as

follows:

Cij =

oij _ X0 —%) Fin=%n)] (4.13)
70 \/Z'Ll(xij—x_;)zJi?ﬂ(xim—m)z

where, o;; is the population covariance, g; and g; are the standard deviations of the

variables. The diagonal elements of the correlation matrix are 1 due to

standardization and it is defined as the p x p symmetric positive matrix.

Since PCA is the linear combination of the variables, the directions of variables and
variance differences are obtained through eigenvector and eigenvalue analyses,
respectively. While eigenvectors are composed of directions and magnitudes for
each defined variable, PCA uses only one eigenvector as the combination of
variables in terms of contribution coefficients. For the variance difference as stated
before, eigenvalues determine variances for each principal component, where the
largest variance signifies the first principal component as well as the others are
sequenced likewise.

To calculate the eigenvalues and eigenvectors as well as elimination of redundant

elements, the correlation matrix has to be diagonalized as follows:
XD = KTXCOT-K = dlag(ll }.p) (414)

where, K is the rotation matrix and X_,, is the correlation matrix.
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The uncorrelated variables are defined as vectors in the rotated space as follows:
yi = KTx;, xi = Ky;¥j (4.15)
The eigenvalues and eigenvectors are computed as follows:
Xp—ADv;= 0forj=12..,p (4.16)

where, | is the identity matrix, 4; is the eigenvalue and v; is the eigenvector defined
for each variable. The solution of the characteristic equation defines the principal
components of the correlation matrix when ordered from the highest to the lowest

eigenvalues as follows:
Xpvj = Ay forj=12..,p (4.17)
det (X, —AI) =0 (4.18)
where, p is the number of eigenvalues.

After the calculations of eigenvalues and eigenvectors, principal components can be
arranged according to feature extraction and feature selection. The former considers
each initial variable equally and the latter is based on the selection of most important
variables. In this study, feature extraction is performed with classical methods, which
use eigenvalues as variance indicators. The first classic method is Kaiser Rule
(Kaiser, 1960), which retains all the principal components that have eigenvalues
equal or higher than 1. Since the highest eigenvalue gives the highest variation, the
lower eigenvalues can be ignored by this approach (Bohm and Zech, 2010). The other
method is the percentage-based variance comparison with respect to the total
variance. The sum of eigenvalues of variables is defined as the total variance where

the percentage of each component’s variance is computed as follows:
PCn = [4;/ (XF_; 2;)]*100 (4.19)

where, PCxis the n' principal component.
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4.4  Multivariate Adaptive Regression Splines

The previous regression methods are based on parametric statistics. Parametric
statistics do not handle the non-linearities between independent variables. Thus, in
this study, multivariate adaptive regression splines (MARS), one of the available
non-parametric approaches, is employed to handle potential non-linearities between
independent variables using piecewise linear functions (Friedman, 1991). Although
the response variable is highly biased as in this study, MARS can offer quick
predictions that have significantly low variance and low bias. It has only one main
drawback regarding the data checks, which are not calculated directly. However,
given its simplicity and effective interpretation of the results, MARS is preferred

as the non-parametric approach for regression in this study.

In this study, MARS is performed for each study region individually to obtain the
regional differences. Since MARS algorithm selects the most influential variables
automatically, the regional differences are expressed not only in terms of
correlation coefficients, but also in terms of the included predictor variables in the

prediction equations.

44.1 Methodology

MARS is based on a linear model that uses linear and/or non-linear functions of
independent variables to explain a given data structure. For a well-defined data
structure, MARS algorithm enables to use step functions and polynomial regression
functions to obtain non-linearities and intersection points between independent

variables.

In addition, the best prediction of the response variable can be achieved by increasing
the degree of polynomial regression functions as seen in Figure 4.1, the optimal

degree of polynomial used in the calculations is limited to 4, where the
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multicollinearity between independent variables increases beyond this threshold

value.

(A) Assumed linear relationship (B) Degree-2 polynomial regression

(C) Degree-3 polynomial regression (D) Step function regression

¥ o® .
Ak I 3 7

o

Figure 4.1 Alternative approaches for linear and non-linear patterns in given
data (adopted from https://bradleyboehmke.github.io/HOMLY/)

The linear formulation of MARS is defined as follows:
Y; = By + B1X; + BoX%, 4+ -+ BgX% + ¢ (4.20)

The other alternative to polynomials is to use step functions, which break the linear
functions into pieces to define the locally operated constant piecewise linear
functions or the basis functions (Weber et al, 2012). The algorithm is based on
turning continuous variable into an arranged categorical variable. The formulation is

defined as follows:
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Y = Bo + B1Ci(x;) + B2 Co(x;) + B3C3(x;) + -+ BaCa(x;) + €, (4.21)

where, C;(x;) represents x; values ranging from c1 < x; <cz, C,(x;) represents x;
values ranging from cz < x; <cs.., C4(x;) represents x; values ranging from cq <

X <Cd+1.

The cut points, also called knots, define the non-linear relationships between
variables. These points determine the relationships through the linear regression
model, also called a hinge function, with candidate piece(s) as shown in Figure 4.2
for different number of knots. The increase in the number of knots also increases
handling of non-linearities between variables hence smaller residuals are obtained
accordingly. In addition, the increase in the accuracy of the response variable, the
generalized data could be a better representative of the initial dataset since hinge
functions do not require data preparation. MARS algorithm offers to determine the
number of knots if they are not believed to be the best representative of data structure

by the cross-validation analysis of the independent variables.

The general MARS model is as follows:

Y =B+ 2%:1 BmHm (x™) + €, (4.20)

where Y is the response variable, € is an error term which is assumed to have zero
mean and a finite variance. Here, £3,,, are the unknown coefficients for the mth basis
function (m = 1,2, ..., M) and for the constant 1 (m = 0). The functions H,, (m =
1,2,...,M) are hinge (basis) functions and they can be in a form of main or
interaction. For a observed data pair (x;, y;) (i = 1,2, ...n), the form of the mth basis

function for the multiple independent variables is as follows:

J J

Ho (x™): = 15, [Sk;n x (xem — rkm)L, (4.21)
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where [q]yy:=max{0,q}, K, is the number of truncated linear functions

multiplied in the mth basis function, x,’{‘j is the input variable corresponding to the
jth truncated linear function in the mth basis function, r,’c"j is the knot value

corresponding to the variable x,’cnj, and S,Tj is the selected sign +1 or —1.

(A) One knot (B) Two knots
2 2

0 2 4 6 0 2 4 6
X X

Figure 4.2 Examples of fitted regression splines for different number of
knots (adopted from https://bradleyboehmke.github.io/HOMLY/)

A basic MARS model is obtained by “earth package” in R software (Torsten, 2022)
where the dataset of each study region is analyzed by all possible knots to obtain the
optimal number based on the estimated change in R? of less than 0.001 (Hastie and
Lumley, 2019). Although the change in the coefficient of determination is very low,
Generalized Cross-Validation, which generates the estimated leave-one-out cross-
validation error metric, is performed to regularize the trade-off between model
complexity and goodness-of-fit (Golub, Heath, and Wahba,1979).
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CHAPTER 5

RESULTS AND DISCUSSION

51 General

In this study, initially, the relationships between MMI and log (PGA) as well as log
(PGV) are studied with linear regression method using 3114 data pairs of MMI and
PGA&PGV. Next, PCA is performed for 2171 data points composed of Mw, PGA,
PGV, PGD, epicentral distance, D_5 95, Arias intensity, focal depth, Vs30, and the
number of responses to select the parameters which mostly influence MMI levels.
Based on the results of PCA, multiple linear regression is then performed with
explanatory variable couples of PGA and epicentral distance as well as PGV and
epicentral distance where MMI is the response variable. Finally, to study the
potential non-linearities in the databases, MARS method is used via piecewise linear
functions. The results are compared in terms of statistical coefficients (e.g.:
coefficient of determination). GraphPad Prism 9 software (30 days trial version) is
used for linear calculations. The estimated linear relationships between felt intensity
and ground motion parameters are within the 95% confidence interval limit.
Additionally, the residuals are plotted. For MARS computations, R software is used.
With the use of these methods, not only predictive relationships are derived but also

regional differences are captured.

5.2 Implementation of Linear Regression Method

Linear regression is performed for PGA-MMI and PGV-MMI data pairs with the

following formulations:
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MM les= B1+B2*log(PGA) (5.1)
MM esi= Bs+Ba*log(PGV) (5.2)

where, Bj values are the regression coefficients.

521 Database 1: Tiirkiye

The statistical parameters for the mean representative PGA and PGV values are

presented at Table 5.1.

Table 5.1 Statistical parameters of the mean representative PGA and PGV values
for each MM level for the Tiirkiye database

MMI log(PGA) log(PGV)
1 -0.048 -0.816
2 0.436 -0.483
3 0.492 -0.386
4 0.728 -0.200
5 1.085 0.115
6 1.053 0.110
7 1.645 0.575
8 1.233 0.426
9 2.239 1.400

The estimated MMI in terms of PGA for the Tiirkiye database is computed to be as

follows:
MMlest= 1.290+3.766*log(PGA) (5.3)

Figure 5.1 shows the best fit line plot and the residual plot for MMI-log(PGA)
correlation of the Tiirkiye database. The R? value is 0.8897. The P-value is 0.0001.

These numerical values indicate moderate to strong correlation.
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Figure 5.1 The best fit line with the mean representative dataset plot and the
residual plot of the Tiirkiye database for MMI-log(PGA) correlation

The estimated MMI in terms of PGV for the Tiirkiye database is computed to be as
follows:

MMlest= 4.687+3.919*l0g(PGV) (5.4)

Figure 5.2 shows the best fit line plot and the residual plot of MMI-log (PGV)
correlation of the Tiirkiye database. R? is 0.9036. The P-value is <0.0001. These

numerical values indicate moderate to strong correlation.
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Figure 5.2 The best fit line with the mean representative dataset plot and the

residual plot of the Tiirkiye database for MMI-log(PGV) correlation
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522 Database 2: Aegean-Mediterranean Region
The statistical parameters for the mean representative PGA and PGV values are
presented at Table 5.2.

Table 5.2 Statistical parameters of the mean representative PGA and PGV values
for each MM level for the AMR database

MMl log(PGA) log(PGV)
1 0.132 -0.414
2 0.509 -0.424
3 0.576 -0.347
4 0.752 -0.220
5 1.144 0.171
6 1.327 0.225
7 1.693 0.597
8 1.462 0.525

The estimated MMI in terms of PGA for the AMR database is computed to be as

follows:
MMlest= 0.331 +4.390*log(PGA) (5.5)

Figure 5.3 shows the best fit line plot and the residual plot of MMI-log(PGA)
correlation of the AMR database. R? is 0.9339. The P-value is <0.0001. These

numerical values indicate a strong correlation.
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Figure 5.3 The best fit line with the mean representative dataset plot and the
residual plot for of the AMR database for MMI-log(PGA) correlation
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The estimated MMI in terms of PGV for the AMR dataset is computed to be as
follows:

MM lese= 4.420 +5.597*log(PGV) (5.6)

Figure 5.4 shows the best fit line plot and the residual plot of MMI-log(PGV)
correlation of AMR database. R?is 0. 9193. The P-value is 0.0002. These numerical

values indicate a strong correlation.
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Figure 5.4 The best fit line with the mean representative dataset plot and the
residual plot of the AMR database for MMI-log(PGV) correlation

523 Database 3: Strike-Slip Region
The statistical parameters for the mean representative PGA and PGV values are
presented at Table 5.3.

Table 5.3 Statistical parameters of the mean representative PGA and PGV values

for each MM level for the Strike-Slip Region database

MMI log(PGA) log(PGV)
1 -0.077685185 -0.88214134
2 0.373885704 -0.534663255
3 0.412192236 -0.424261758
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Table 5.3 (cont’d)

4 0.705540196 -0.181384963
5 1.010860097 0.048815176
6 0.885175145 0.037353096
7 1.478207052 0.495517408
8 1.142279865 0.386734624
9 2.23926059 0.386734624

The estimated MMI in terms of PGA for the Strike-Slip database is computed to be

as follows:
MMlest= 1.6 +3.745*log(PGA) (5.7)

Figure 5.5 shows the best fit line plot and the residual plot of MMI-log(PGA)
correlation of the Strike-Slip database. R?is 0.8667. The P-value is 0.0003. These

values indicate a moderate to strong correlation.
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Figure 5.5 The best fit line with the mean representative dataset plot and the
residual plot of the Strike-Slip database for MMI-log(PGA) correlation

The estimated MMI in terms of PGV for Strike-Slip database is computed to be as

follows:

MM les= 4.852 +3.850*log(PGV) (5.8)
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Figure 5.6 shows the best fit line plot and the residual plot of MMI-log(PGA)
correlation of the Strike-Slip database. R? is 0.8954. The P-value is 0.0001. These

values indicate a moderate to strong correlation.
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Figure 5.6 The best fit line with the mean representative dataset plot and the

residual plot of the Strike-Slip database for MMI-log(PGV) correlation

524 Comparison of Correlations in Alternative Study Areas

The correlation equations for different study areas in this thesis are shown in Table
5.4. Next, Figure 5.7 compares the MMI-PGA and MMI-PGV correlations for
different regions, respectively.

Table 5.4 PGA-based correlation equations of MMI for different study areas in this

thesis
Study Areas/Databases MMI-PGA Correlation R2
1: Turkiye MMI=1.290+3.766* log(PGA) | 0.8897
2: AMR MMI=0.331+4.390* log(PGA) | 0.9339
3: Strike-Slip MMI=1.600+3.745* log(PGA) | 0.8667
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Table 5.5 PGV-based correlation equations of MMI for different study areas in

this thesis
Study Areas/Databases MMI-PGV Correlation R?
1: Tiirkiye MMI=4.687+3.919* log(PGA) | 0.9036
2: AMR MMI=4.420+5.597* log(PGA) | 0.9193
3: Strike-Slip MMI=4.852+3.850* log(PGA) | 0.8954

MMI-PGA Correlation MMI-PGV Correlation

s Turkey w— T ik ey

gl AMR ‘ 4 Heky
s Strike-Slip Region / 10 | == Strike-Siip Region

MMI

0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
log(PGA)(cm/s2) log(PGV)(cm/s)

Figure 5.7 Comparison of MMI-log(PGA) and MMI-log(PGV) correlations for

the study areas in this thesis

It is observed that not only the coefficient of determination of Tiirkiye dataset but
also those of the other two dataset’s for MMI-log(PGV) correlation are higher than
the coefficient of determination values for the corresponding MMI-log(PGA)
correlations. PGV is a better indicator for more ductile reinforced concrete structures
while PGA is better correlated to damage in rigid masonry structures (Erberik, 2008
a,b). Given the majority of the structural type in Tiirkiye, PGV based ground motion
to intensity conversion equations are strongly recommended for Tiirkiye. However,
in regions with less ductile reinforced concrete structures and in regions with more

rigid structures, PGA-based equations are suggested.

It is observed that entire Tiirkiye and Strike-Slip regions, whose dataset is composed
of dominantly strike-slip earthquakes, exhibit compatibility for MMI-PGA and
MMI-PGV relationships. However, resulting equations for the AMR region

underestimate MMI values by approximately 1 unit when MMI-PGA correlation is
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used and 2 units when MMI-PGV correlation is used. The differences are mostly
attributed to the differences in focal mechanisms of earthquakes, building stock, and

regional seismic parameters.

The highest coefficient of correlation is obtained for MMI-log(PGA) relationship in
AMR, although the contribution of AMR dataset to the entire region dataset is not
significant for both correlations as presented in Figure 5.7. This shows that it is
necessary to examine AMR individually. In this thesis, ground motion to intensity
conversion equations of AMR are successfully obtained according to coefficient of
determination values higher than 90%. Additionally, this also emphasizes that the
regional distinction is defined appropriately. For future events in Aegean and

Mediterranean region, use of this particular correlation is recommended.

525 Comparison of the Correlations in This Study with the Most
Commonly Used MMI-Ground Motion Correlation Studies

The resulting ground motion to intensity conversion (MMI-PGA and MMI-PGV)
equations of Tiirkiye are compared with the most commonly used MMI-PGA and
MMI-PGV correlations worldwide. Since the previous studies are not partially
region based, the comparison is performed between the equation for the entire
Tiirkiye dataset to the correlations in prior studies. The correlation equations selected
for the comparison of MMI-PGM relationships are presented in Table 5.6. Figure

5.8 compares these equations with those obtained for MMI-PGA in this thesis.

Table 5.6 Equations for MMI-PGA correlations selected for comparisons against

this study
Previous Studies Equation
Wald et al. (1999-a) MMI=-1.66+3.660*log(PGA)
Arioglu et al. (2001) MMI=-1.078+1.748*In(PGA)

Tselentis and Danciu (2008) MMI=-0.946+3.563*log(PGA)
Faenza and Michelini (2010) MMI=1.680+2.580*log(PGA)
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Table 5.6 (cont’d)

Bilal and Askan (2014) | MMI=0.132+3.884*log(PGA)
This Study MMI=1.290+3.766*log(PGA)

It is observed in Figure 5.8 that, for a given acceleation level, MMI-PGA correlation

MMI-PGA Correlation

e Bilal and Askan (2014)
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Figure 5.8 Comparison of this study with the most commonly used studies for
MMI-PGA correlation

equation for California by Wald et al. (1999-a), with a dominant strike-slip focal
mechanism; MMI-PGA correlation equation for Greece by Tselentis and Danciu
(2008), and MMI-PGA correlation equation for Italy by Faenza and Michelini (2010)
underestimate the felt-intensity values from the corresponding equation derived in
this thesis. In addition to the natural subjectivity of MMI values, the differences may
arise from region-specific ground motion characteristics, building response as well
as subjective human responses. Even for California and Tiirkiye which have similar
tectonic structures, differences in the conversion equations are visible which points
to the differences in building characteristics and behavior. This observation confirms

the need for regional correlations.
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For Tiirkiye, Arioglu et al. (2001) underestimate MMI levels by approximately 2
units, and Bilal and Askan (2014) underestimates MMI levels by 1 unit. The
difference between these studies and the relationship derived in this thesis is
precisely the volume of the new dataset. The entire dataset of this study is composed
of 69 earthquakes although Arioglu et al. (2001) dataset is composed of only 1
carthquake, and Bilal and Askan’s (2014) dataset is composed of 14 different
earthquakes. The correlations in this study better exhibit the MMI levels from large
events when compared to that by Bilal and Askan (2014).

Table 5.7 Equations for MMI-PGV correlation selected for comparisons against

this study
Previous Study Equation
Wald et al. (1999-a) MMI=2.350+3.470*log (PGV)
Atkinson and Kaka (2004) MMI=3.960+1.790*log (PGV)

Tselentis and Danciu (2008) MMI=3.300+3.358*log (PGV)
Faenza and Michelini (2010) MMI=5.110+2.350*log (PGV)
Bilal and Askan (2014) MMI=0.319+5.021*log (PGV)
This Study MMI=4.687+3.919*log (PGV)

MMI-PGV Correlation
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Figure 5.9 Comparison of this study with the most commonly used studies for
MMI-PGV correlation
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Faenza and Michelini (2010) overestimate the MMI levels in this study for values up
to MMI=V and underestimate for the rest of the scale. The remaining equations from
other studies underestimate MMI levels. The results show that the ground motion to
intensity conversion equations for MMI-PGV correlations certainly need to be

constructed locally.

Bilal and Askan (2014) underestimate the MMI levels computed from PGV by
approximately 2 units for Tirkiye. The main difference is the increased number of

ground motion stations which help exhibit regional differences.

5.3  Implementation of Principal Component Analysis Method

Principal component analysis is performed for the entire database of Tiirkiye, AMR,
and Strike-Slip databases to define the most influential variables on MMI levels.
Next, the correlation matrix is used to retain only uncorrelated variables. Since the
entire Tirkiye database has almost the same correlation coefficients in the
correlation matrix, the selected explanatory variables of this dataset is used for
further calculations. In this study, PGA and PGV are examined individually since
these parameters are the main explanatory variables in ground motion to intensity

conversion equations.

The correlation matrix of the entire Tiirkiye database is presented in Figure 5.10. The
AMR database and the Strike-Slip database correlation matrices are presented in

Appendix F and Appendix G, respectively.
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Figure 5.10 The correlation matrix of the Tiirkiye database

According to the correlation matrix of the Tirkiye database, PGA&PGV,
PGA&Arrias intensity, PGV&Arias intensity, epicentral distance&D 5 95 are
highly correlated with each other. PGV&magnitude, magnitude&D_5 95 are

moderately correlated with each other.

For MM I-based relationships of variables, P value summary of the Tiirkiye database
is used of which the details are presented at Appendix H. PGA, PGV, magnitude,
Arias intensity, D_5 95, and epicentral distance are defined as the most important
parameters but, as stated earlier, there are correlations among these variables. To
prevent multicollinearity, it is necessary to retain only the uncorrelated or very
weakly correlated variables. Based on the correlation values in Figure 5.10, the
uncorrelated variables are selected as PGA&epicentral distance and

PGV &epicentral distance.
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53.1 PGA-based Principal Components

The PGA-based eigenvalues of the principal components of the Tiirkiye database are

presented in Figure 5.11.

Eigenvalues
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Figure 5.11 PGA-based eigenvalues of principal components for the Tiirkiye
database

The PGA-based proportion of variance of principal components for the Tiirkiye
database is presented in Figure 5.12.
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Figure 5.12 The proportion of variance of PGA-based principal component
analysis of the Tiirkiye database
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PGA-based eigenvalue analyses defined 9 eigenvalues with their proportions of
variances but according to Kaiser rule, the first principal components are the most
significant. Since the first principal component has the highest variance and the
highest eigenvalue, the most influential variable of the first principal component is
the most contributing variable. As presented in Table 5.8, PGA is the top contributor
variable. Next , epicentral distance, D_5 95, and Arias intensity are ordered in terms

of decreasing contributions.

Table 5.8 The contribution of variables for PGA-based principal component

analysis of the Tiirkiye database

Variables PC1 PC2 PC3
Magnitude 0.011 0.344 0.021
PGA 0.280 0.142 1.966E-05
PGD 0.005 0.068 0.350
Focal Depth 0.001 2.082E-05 0.528
Vs30 0.005 0.017 0.061
D595 0.225 0.138 0.001
Arias Intensity 0.207 0.197 1.717E-05
Epicentral Distance 0.257 0.090 0.008
Number of Responses 0.006 1.687E-05 0.029

The loadings of variables for PGA-based principal component analysis is presented
in Figure 5.13.

Loadings
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Figure 5.13 The loadings of variables between the first principal components for
PGA-based principal component analyses
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The loadings in Figure 5.13, which are used to define the correlations between
parameters visually, show that V30, focal depth, and number of responses do not
have significant affects on PGA-based principal components. However, the
correlations between PGA & Avrias intensity, and epicentral distance & D_5 95 are

obtained just as in the correlation matrix.

5.3.2 PGV-based Principal Components

The eigenvalues of principal components are presented at Figure 5.14.

Eigenvalues
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Principal Component

Figure 5.14 PGV-based eigenvalues of principal components for the Tiirkiye
database

The proportion of variance of PGV-based principal component analysis is presented
in Figure 5.15.
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Figure 5.15 The proportion of variance of PGV based principal component
analysis of the Tiirkiye database

PGV-based eigenvalue analyses defined 9 eigenvalues with their proportions of
variance. According to Kaiser rule, as presented in Table 5.9, PGV is the most
contributing variable with a slightly higher contribution than Arias intensity, and
epicentral distance, and D_5 95, and are ranked in order of decreasing
contributions.This is an interesting result since the correlation coefficients between
MMI-PGA and PGA-Arias intensity are higher than the correlation coefficients
between MMI-PGV and PGV-Arias intensity.

Table 5.9 The contribution of variables for PGV-based principal component

analysis

Variables PC1 PC2 PC3

Magnitude 0.001 0.329 0.021
PGV 0.296 0.136 1.77E-05

PGD 0.001 0.069 0.349

Focal Depth 0.002 1.38E-05 0.528

Vs30 0.012 0.010 0.062

D5 95 0.172 0.209 0.001
Avrias Intensity 0.293 0.082 1.29E-05
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Table 5.10 (cont’d)

Epicentral Distance 0.214 0.161 0.008
Number of Responses 0.007 0.001 0.030

The loadings of variables for PGV-based principal component analysis is presented
at Figure 5.16.

Loadings

PC2

Figure 5.16 The loadings of variables between the first principal components of
PGV-based principal component analyses

The loadings in Figure 5.16 shows the same relationships between variables for
PGV-based principal component analyses as in the case of PGA.

5.4 Implementation of Multiple Linear Regression Method

Multiple linear regression is performed for each study database defined in this thesis
by using the most influential variables that are identified by principal component
analysis. These variable couples are PGA&epicentral distance and PGV &epicentral
distance. The formulations of the equations are defined as follows:

MMlest= B1+B2*(PGA)+ Bs*(Epicentral Distance) (5.9)

MMlest= Ba+Bs*(PGV)+ Be*(Epicentral Distance) (5.10)
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where, Bi values are the regression coefficients.

541 Database 1: Tiirkiye

The estimated MMI in terms of PGA and epicentral distance for the Tiirkiye database

is computed to be as follows:

MMlest =3.774+(0.02401) (PGA)-(0.003085) (Epicentral Distance) (5.11)

The regression coefficients and the standard errors are presented in Table 5.10.

Table 5.10 Regression coefficients and standard errors of Equation 5.11

Parameter estimates Variable Estimate | Standard error
B Intercept 3.774 0.05979
B PGA 0.02401 0.001447
B3 Epicentral Distance -0.003085 0.0002869

The multicollineartiy of the parameters is defined by Variance Inflation Factors

(VIF), which are presented in Table 5.11.

Table 5.11 VIFs of Equation 5.11

Multicollinearity Variable VIF
B1 Intercept
B> PGA 1.193
B3 Epicentral Distance 1.193
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Figure 5.17 The estimated and observed MM levels and the Q-Q plot for MMI-

PGA-epicentral distance correlation of the Tiirkiye database

The estimated MMI in terms of PGV and epicentral distance for Tiirkiye dataset is
computed as follows:

MM lest =3.834+(0.2659)*(PGV)-(0.003778)*(Epicentral Distance) (5.12)

The regression coefficients and the standard errors are defined in Table 5.12 while
VIFs are presented in Table 5.13.

Table 5.12 Regression coefficients and standard errors of Equation 5.12

Parameter estimates Variable Estimate | Standard error
B4 Intercept 3.834 0.0550
Bs PGV 0.266 0.0140
Bs Epicentral Distance -0.004 0.0002

Table 5.13 VIFs of Equation 5.12

Multicollinearity Variable VIF
Ba Intercept
Bs PGV 1.061
Bs Epicentral Distance 1.061
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Figure 5.18 The estimated and observed MMI levels and the Q-Q plot for MMI-
PGV-epicentral distance correlation of the Tiirkiye database

For the correlations of PGA-epicentral distance with MMI and PGV-epicentral

distance with MMI, there is no multicollinearity between variables since VIF is

lower than the limiting value of 4. Since P value is <0.0001 for both of these

regressions, these regressions are statistically significant. The Q-Q plots show that

there are saturations at the two ends, so the fitted database into the regression model

is obtained moderately. MMI values are overestimated up to MMI=III, and

underestimated for higher levels compared to the best-fit of estimation resulting in

lower correlation coefficients, which are presented in Table 5.14.

Table 5.14 The goodness of fit parameters of multiple linear regression analysis of

the Tirkiye database
Goodness of Fit PGA-Epicentral Distance | PGV-Epicentral Distance
Degrees of Freedom 2168 2168
Multiple R 0.477 0.506
R squared 0.227 0.256
Adjusted R squared 0.227 0.255
Sum of Squares 2308 2223
RMSE 1.031 1.012
AlCc 141.200 59.290
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According to goodness of fit parameters, PGV-epicentral distance based GMICE is

a better fit for the entire Tiirkiye database.

Since Bilal and Askan (2014) derived ground motion to intensity equations based on
moment magnitude, epicentral distance and PGA&PGV, the resulting equations in

this thesis are not compared with the equations from that study.

5.4.2 Database 2: Aegean-Mediterranean Region

The estimated MMI in terms of PGA and epicentral distance for the AMR database

is computed to be as follows:
MMlest =3.575+(0.02797)*(PGA)-(0.002561)*(Epicentral Distance) (5.13)

The regression coefficients and the standard errors are defined at Table 5.15 and
VIFs are presented in Table 5.16.

Table 5.15 Regression coefficients and standard errors of Equation 5.13

Parameter estimates Variable Estimate | Standard error
B7 Intercept 3.575 0.0790
Bs PGA 0.028 0.0020
By Epicentral Distance -0.003 0.0004

Table 5.16 VIFs of Equation 5.13

Multicollinearity Variable VIF
B7 Intercept
Bg PGA 1.165
By Epicentral Distance 1.165
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Figure 5.19 The estimated and observed MMI levels and the Q-Q plot for MMI-

PGA-epicentral distance correlation of the AMR database

The estimated MMI in terms of PGV and epicentral distance for the AMR database
is computed to be as follows:

MM lest =3.688+(0.2899)*(PGV)-(0.003539)*(Epicentral Distance)  ( 5.14)

The regression coefficients and the standard errors are defined at Table 5.17 and
VIFs are presented in Table 5.18.

Table 5.17 Regression coefficients and standard errors of Equation 5.14

Parameter estimates Variable Estimate | Standard error
B1o Intercept 3.688 0.0750
B11 PGV 0.289 0.0170
B12 Epicentral Distance -0.004 0.0004

Table 5.18 VIFs of Equation 5.14

Multicollinearity Variable VIF
Bio Intercept
Bu1 PGV 1.070
Bi2 Epicentral Distance 1.070
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The estimated MMI and the observed MMI levels are plotted at Figure 5.20.

Actual vs Predicted plot QQ plot

Predicted MMI
Predicted residual

— T T T -4 T T T T
2 4 6 8 -4 -2 0 2 4

Actual MMI Actual residual

Figure 5.20 The estimated and observed MM levels and the Q-Q plot for MMI-

PGV-epicentral distance correlation of the AMR database

For the correlation of PGA-epicentral distance with MMI and PGV-epicentral
distance with MMI, there is no multicollinearity between variables since VIF is
lower than 4. The Q-Q plots show that the assumption of normal distribution of
variables is moderately significant due to the skewness at the beginning and the end
of the graph. MMI levels are overestimated up to MMI=IIl, and underestimated for
higher levels compared to the perfect estimation because of low correlation
coefficients. Additionally, P values lower than 0.0001 for both of these regressions
provides statistical significance. The correlation coefficients are shown in Table
5.19.

Table 5.19 The goodness of fit parameters of multiple linear regression analysis of

the AMR database
Goodness of Fit PGA-Epicentral Distance | PGV-Epicentral Distance
Degrees of Freedom 1107 1107
Multiple R 0.533 0.537
R squared 0.284 0.288
Adjusted R squared 0.283 0.287
Sum of Squares 1049 1043
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Table 5.19 (cont’d)

RMSE

0.973

0.969

AlCc

-54.510

-61.390

According to goodness of fit parameters, PGV-epicentral distance based GMICE is
a better fit for the AMR database.

5.4.3

Database 3: Strike-Slip Region

The estimated MMI in terms of PGA and epicentral distance for the Strike-Slip

database is computed to be as follows:

MMlest =4.181+(0.01578)*(PGA)-(0.004374)*(Epicentral Distance)

(5.15)

The regression coefficients and the standard errors are defined at Table 5.20 and
VIFs are presented in Table 5.21.

Table 5.20 Regression coefficients and standard errors of Equation 5.15

Parameter estimates Variable Estimate | Standard error
Bi3 Intercept 4.181 0.0990
B4 PGA 0.016 0.0030
Bis Epicentral Distance -0.004 0.0004
Table 5.21 VIFs of Equation 5.15
Multicollinearity Variable VIF
B3 Intercept
B PGA 1.251
Bis Epicentral Distance 1.251
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Figure 5.21 The estimated and observed MM levels and the Q-Q plot for MMI-

PGA-epicentral distance correlation of the Strike-Slip database

The estimated MMI in terms of PGV and epicentral distance for the Strike-Slip

database is computed to be as follows:
MMlest =4.129+(0.2273)*(PGV)-(0.004624)*(Epicentral Distance) (5.16)

The regression coefficients and the standard errors are defined at Table 5.22 and
VIFs are presented in Table 5.23.

Table 5.22 Regression coefficients and standard errors of Equation 5.16

Parameter estimates Variable Estimate | Standard error
Bis Intercept 4.129 0.0880
Bir PGV 0.227 0.0230
Bis Epicentral Distance -0.005 0.0004

Table 5.23 VIFs of Equation 5.16

Multicollinearity Variable VIF
Bis Intercept
B1z PGV 1.058
Bis Epicentral Distance 1.058
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Actual vs Predicted plot QQ plot
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Figure 5.22 The estimated and observed MM levels and the Q-Q plot for MMI-

PGV-epicentral distance correlation of the Strike-Slip database

For the correlation of PGA-epicentral distance with MMI and PGV-epicentral
distance with MMI, there is no multicollinearity between variables since VIF is
lower than 4. The Q-Q plots show that the assumption of normal distribution of
variables is moderately significant due to the skewness at the two ends. MMI levels
are overestimated up to MMI=11l and underestimated for higher levels compared to
the perfect estimation because of low correlation coefficients, which are presented
in Table 5.24.

Table 5.24 The goodness of fit parameters of multiple linear regression analysis of
the Strike-Slip database

Goodness of Fit PGA-Epicentral Distance | PGV-Epicentral Distance

Degrees of Freedom 1058 1058
Multiple R 0.441 0.489

R squared 0.195 0.239
Adjusted R squared 0.193 0.238
Sum of Squares 1223 1155
RMSE 1.074 1.044

AlCc 158.700 97.930
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According to goodness of fit parameters, PGV-epicentral distance based GMICE is
a better fit for the Strike-Slip database.

55 Implementation of Multivariate Adaptive Regression Splines Method

Multivariate adaptive regression splines method is used for defining the non-linear
relationships between ground motion parameters and felt intensity levels for each
study region defined in this study. In this thesis, the best estimation function in the
R software is used to define the hinge functions as well as intercept value through
the databases.

55.1 Database 1: Tiirkiye

Entire database of Tiirkiye database is composed of 2171 data points. After the best
estimation of felt intensity through ground motion parameters, 6 ground motion
parameters are selected as the predictor variables, which are magnitude, epicentral
distance, Arias intensity, D 5 95, focal depth, and number of responses, and 13
terms, which are composed of 12 hinge functions as well as the intercept value, are
defined as the best model of felt intensity estimation through selected ground motion

variables.

The estimated MMI in terms of selected variable threshold values of hinge functions

and coefficients for the entire Tiirkiye database is defined in Equation 5.17.
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( 13.955598945, Intercept
1.647982134, 6.5 = Magnitude
—0.880186683, Magnitude = 6.5
—0.030721920, 93.6855 > Epicentral Distance
—0.038201614, 65.9992 > Epicentral Distance
0.063755330, 85.6238 > Epicentral Distance
MMlest =< 0.017941812, 19.44 > Focal Depth (5.17)
0.034690745, Focal Depth > 19.44
—0.003590779, 28.0179 = D_5_95
—15.294538078, Arias Intensity = 0.064895
—0.172547439, 2 > Number of Responses
0.170705315, 47 = Number of Responses
\ —0.182530239, Number of Responses > 47

The model summary of MARS for the entire database of Tiirkiye database is

presented at Figure 5.23.
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Figure 5.23 Model summary of MARS for the entire Tiirkiye database

The goodness of fit parameters for the best model of MARS for the entire database

of Tirkiye is presented at Table 5.25.
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Table 5.25 The correlation coefficients between MMI and selected predictor

variables for the entire database of Tiirkiye

Goodness of fit Value
RMSE 0.900

R? 0.413

MAE 0.688
RMSESD 0.025
R°SD 0.033
MAESD 0.022

The resulting equation of best MARS model for the entire Tirkiye database shows
that magnitude is selected as the main explanatory variable rather than PGA and
PGV. This model is still valid due to the correlation between PGA&PGV and
magnitude. Although the increase in complexity of the model reduces the coefficient
of determination, MARS model has a higher R? value when compared to multiple

linear regression for the same database.

GRSq is generalized coefficient of determination and RSq is the coefficient of
determination of the best model of MARS. As presented in Figure 5.23, the increased
number of variables reduce the coefficient of determination for GRSq. Since we use
the best estimate function in R, RSq is used. According to R? of this model, the

prediction of MMI is of moderate power.

55.2 Database 2: Aegean-Mediterranean Region

The AMR database is composed of 1111 data points. After the best estimation of felt
intensity through ground motion parameters, seven ground motion parameters are
selected as the predictor variables, which are PGA, PGD, magnitude, epicentral
distance, D_5 95, focal depth, and number of responses. 16 terms, which are
composed of 15 hinge functions as well as the intercept value, are defined as the best

model of felt intensity estimation through selected ground motion variables.
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The estimated MMI in terms of selected variable threshold values of hinge functions
and coefficients for the AMR database is defined in Equation 5.18.

(—22.911524682, Intercept
—0.008626564, PGA > 46.998
16.159749441, 0.030289 = PGD
—16.179232565, 1.78988 > PGD
15.917248393, PGD > 1.78988
9.556664445, 6.5 = Magnitude
—12.056791705, 6.6 = Magnitude
—0.917524992, Magnitude > 6.5
0.008014414, 102.849 = Epicentral Distance
—0.012357381, 45.4583 > Epicentral Distance
0.021261746, 14.9 = Focal Depth
0.086767620, Focal Depth > 14.9
0.013238413, 113.878 > D_5.95
0.007216839, D_595 > 113.878
—0.003918730, 45 = Number of Responses
\ —0.022255002, Number of Responses > 45

MMlest = < (5.18)

Figure 5.24 shows the model summary of MARS for the AMR database.
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Figure 5.24 Model summary of MARS for the AMR database
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The goodness of fit parameters for the best model of MARS for the AMR database
is presented at Table 5.26.

Table 5.26 The correlation coefficients between MMI and selected predictor
variables for the AMR database

Goodness of fit Value
RMSE 0.848

R? 0.458

MAE 0.642
RMSESD 0.079
R°SD 0.068
MAESD 0.059

The resulting equation of best MARS model for the AMR database shows that PGA
and PGD are both selected as the explanatory variables. Although PGD is not a very
stable ground motion parameter and a very limited number of structures are prone to
PGD, it is also defined as an additional variable. The coefficient of determination is
still higher for the best model of MARS for the AMR database than multiple linear
regression. According to R? of this model, the prediction of MMI is of moderate

power.

553 Database 3: Strike-Slip Region

The Strike-Slip region database is composed of 1060 data points. After the best
estimation of felt intensity through ground motion parameters, 6 ground motion
parameters are selected as the predictor variables, which are PGV, magnitude,
epicentral distance, focal depth, D_5 95, and number of responses. 14 terms, which
are composed of 13 hinge functions as well as the intercept value, are defined as the
best model of felt intensity estimation through selected ground motion variables.

The estimated MMI in terms of selected variable threshold values of hinge functions

and coefficients for the Strike-Slip database is defined in Equation 5.19.
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(—21.31270794, Intercept
0.08556835, 3.114 > PGV
—3.15695807, 5.8 = Magnitude
1.96748389, Magnitude > 5.8
4.03798728, 6.6 = Magnitude
3.40218257, 5.2 = Magnitude
—2.47561783, 15.96 = Focal Depth
2.27452904, 5.8 = Focal Depth
0.30225069, 22.48 > Focal Depth
2.19126126, Focal Depth > 15.96
—0.00939018, 241.257 > Epicentral Distance
0.00823639, Epicentral Distance > 241.257
—0.01943522, D_5_95 > 29.5509
\ —0.28982486, Number of Responses > 2

MMIlest = < (5.19)

Figure 5.25 shows the model summary of MARS for the Strike-Slip database
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Figure 5.25 Model summary of MARS for the Strike-Slip database

The goodness of fit parameters for the best model of MARS for the Strike-Slip
database is presented at Table 5.27.
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Table 5.27 The correlation coefficients between MMI and selected predictor

variables for the Strike-Slip database

Goodness of fit | Value
RMSE 0.915

R? 0.424

MAE 0.697
RMSESD 0.065
R?SD 0.094
MAESD 0.044

The resulting equation of best MARS model for the Strike-Slip database shows that
PGV is selected as the main explanatory variable rather than PGA. Although PGV
indicates the regional differences specifically, this result is not compatible with the
entire Tirkiye database, which has the same focal mechanism for selected
earthquakes. The statistical parameters show that this correlation model has a higher
R? value when compared to multiple linear regression for the same database.

According to R? of this model, the prediction of MM is of moderate power.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1  Summary and Conclusions

This thesis derives ground motion to intensity conversion equations for entire
Tiirkiye, Aegean-Mediterranean Region, and Strike-Slip dominant regions. Initially,
simple linear regression method is used to obtain the equations for MMI-log(PGA)
and MMI-log(PGV) pairs. Next, principal component analysis is performed to define
the most influential additional variables for PGA and PGV-based ground motion to
intensity conversion equations. After defining the most influential and uncorrelated
variables from PCA, multiple linear regression method is performed for these
variables. Finally, multivariate adaptive regression splines method is performed to
define any potential non-linearities between ground motion variables in the

correlation models through piecewise linear functions.

The main conclusions based on the numerical results in this thesis are listed as

follows:

e Tirkiye and Strike-Slip regions exhibit compatibility with each other for
PGA and PGV correlations. This is mostly because the majority of the data
in Turkiye come from regions with dominant focal mechanism of strike slip.
However, the models based on AMR dataset is observed to be different than
these two regions.

e The highest correlation coefficient is obtained for the simple conversion
equation of MMI-log(PGA) of AMR dataset. The contribution of AMR data
is not significant on the resulting equations of the entire dataset when

compared to the Strike-Slip region’s resulting equations. This observation
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along with the previous conclusion underlines regional differences and
indicates that AMR is required to be examined individually.

The highest correlation coefficients are obtained for simple linear regressions
for all the regions than those from more complex models. This is mostly
because when the number of explanatory variables increase, the predictive
power of regression equations decreases.

The MMI-log(PGV) correlations based on linear regression method perform
better in all regions. Thus, when compared to PGA, PGV seems to be a better
indicator for ground motion to intensity conversion equations for Tirkiye.
This conclusion is different than the findings of Bilal and Askan (2014)
where PGA was found to be a better indicator of damage. The differences in
the findings may arise from the fact that this study encompasses a larger
dataset including MMI values in a wider range while Bilal and Askan (2014)
mostly dealt with large earthquakes causing more severe damage in non-
ductile structures where PGA becomes critical.

Wald et al. (1999-a) MMI-PGA correlation equation for California, Tselentis
and Danciu (2008) MMI-PGA correlation equation for Greece and FaTenza
and Michelini (2010) MMI-PGA correlation equation for Italy underestimate
the felt-intensity levels in Tiirkiye. These differences are mostly due to the
fact that both the design considerations and construction styles of the
buildings as well as the key ground motion parameters exhibit regional
characteristics. Thus, use of region-specific datasets become critical in GMIC
models.

There are minor differences between the findings of this study and previous
MMI models in Tirkiye. The difference between these previous studies and
this thesis is mainly due to the enlarged dataset used herein. Arioglu et al.
(2001) ‘s dataset is composed of only one earthquake, and Bilal and Askan’s
(2014) dataset is composed of 14 different earthquakes whereas the entire

dataset in this thesis is composed of data from 69 earthquakes.
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According to principal component analysis, PGA-epicentral distance and
PGV-epicentral distance are found to be the most influential variables for
ground motion to intensity conversion equations. It is interesting to note that
V/s30 is not found to be correlated with MMI levels and thus it is not included
as an explanatory variable. It is possible to comment that effect of local site
conditions is already included in the PGA values, thus another explicit
explanatory variable is not needed statistically.

The best MARS model for the Strike-Slip dataset selected PGV as the main
predictor variable. This finding, in contrast to the findings of Bilal and Askan
(2014), is compatible with simple linear regression results of this study.
Finally, based on the findings from alternative methods in this study, MMI-
PGA correlations are suggested for regions with rigid masonry buildings and
MMI-PGV correlations are recommended for regions where the ductile
reinforced concrete buildings are the major building type.

The best MARS model for the AMR dataset selected PGA and PGD as
predictor variables. Although PGD is not a very stable ground motion
parameter and a very limited number of structures are prone to PGD, it is still
statistically selected as an additional predictor variable since PGA is defined
in the model.

Since MARS uses piecewise linear functions to model ground motion
variables with MMI, the most critical variables of PGA and PGV are not
forced to be defined in the resulting equations to make them statistically
significant. The best MARS model for the entire Tiirkiye dataset resulting
equation is an example of this concern since it selects neither PGA nor PGV.
Thus, magnitude is selected as the main explanatory variable, which is also
defined in terms of PGA and PGV.

According to the statistical parameters, MARS has higher correlation
coefficients than multiple linear regression. Although both methods are based
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6.2

on a linear modeling of variables, MARS with its piecewise functions
provides a better representative of multiple linear regression.

The resulting equations of this thesis are based on a wide variety of variables
with DYFI system based MMI levels, and derived equations can be used for
ShakeMap applications and disaster management considerations in Tiirkiye.
The ShakeMap applications in Tiirkiye is employed by AFAD-RED but the
equations used in constructing these maps are based on ground motion
models and GMICEs. Since these steps combine two standard deviations, it
is strongly recommended to use resulting equations in this thesis not to
increase the uncertainty in ShakeMap applications.

Finally, simple correlations have practical value and are of critical
importance immediately after the earthquakes. More complex models
however may provide refined information whenever the explanatory

variables are available possibly after a long time following the earthquakes.

Recommendations

Recommendations for future studies can be summarized as follows:

The database in this thesis is gathered between 2005-2022 for magnitude 4
and above earthquakes. As the databases keep expanding, updated GMIC
models are necessary.

Building stock as well as the construction types, number of stories, and
building age can be included in the regression equations for complex
GMICEs to identify the damage levels of specified regions according to these
parameters.

The Strike-Slip region has lower coefficient of determination value when
compared to the AMR for all methods. This shows that it can be divided into

regions to obtain higher coefficient of determination values.
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The methods, which can give more accurate results with relatively small
number of datasets can be used to obtain province-based GMICESs. So, in
future efforts, use of other approaches including machine learning
algorithms, unsupervised learning tools etc. are suggested.

In this study, train and test datasets are not defined. In future studies, such
classifications are recommended to train and test the prediction models.
Verification of the proposed models should be performed via ShakeMaps in
the future earthquakes in Tiirkiye.
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APPENDICES

A. Modified Mercalli Intensity Scale
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B. The Earthquakes used in this study

Table B.1 The earthquakes used in this study

Number | Earthquake ID Date Latitude | Longitude | Magnitude

1 252972 17.10.2005 | 351971 | 26.677 55
05:45

2 263786 20.10.2005 | 351535 | 26.6708 5.8
21:40

3 266472 24.10.2006 | 454221 | 28.9937 5.2
14:00

4 62424 26.12.2007 | 39396 | 33.1073 5.6
23:47

5 100074 8.03.2010 | 35665 | 40.0712 5.1
02:32

6 100169 8.03.2010 | 357457 | 40.0342 5
11:12

7 101233 24.03.2010 | 355713 | 40.0935 5.1
14:11

8 128573 19.05.2011 | 349378 | 29.082 5.8
20:15

9 133752 23.06.2011 | 355567 | 39.6307 5.4
07:34

10 139913 22.09.2011 | 396597 | 38.6777 5.6
03:22

11 141933 23.10.2011 | 39589 | 43.4657 7
10:41

12 142682 25.10.2011 | 39953 | 435857 5.4
14:55

13 146118 8.11.2011 | 397997 | 43.0778 5.4
22:05

14 146290 9112011 | 394387 | 43.2825 5.6
19:23

15 167145 10.06.2012 | 355305 | 28.9073 6
12:44

16 168752 25.06.2012 | 304797 | 28.9333 5
13:05

17 210047 28.12.2013 | 30048 | 31332 5.9
15:21

18 272073 4.09.2014 | 35477 | 30.9301 5.2
21:00
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Table B.1 (cont’d)

Number | Earthquake ID Date Latitude | Longitude | Magnitude
6.12.2014
19 283239 01:45 38.904 | 26.2741 5.1
20 313035 6.10.2015 36.1846 | 29.8853 5.2
21:27
10.01.2016
21 322860 17:40 39.564 34.358 5
22 350630 27.09.2016 36.405 | 27.5966 5.2
20:57
23 360180 6.02.2017 39.5423 | 26.1318 5.3
03:51
6.02.2017
24 2 527 26.137 .
360268 10-58 39.5275 6.1373 53
7.02.2017
25 360450 02:24 39.514 | 26.1161 5.2
12.02.2017
26 361551 13-48 39.5336 26.17 5.3
27 363883 2.03.2017 37.5955 | 38.4866 5.5
11:.07
28 368412 13.04.2017 37.1533 | 28.647 5.1
16:22
29 373447 27.05.2017 38.7358 | 27.8156 5.1
15:53
30 375576 12.06.2017 38.8486 | 26.313 6.2
12:28
31 376890 17.06.2017 38.8381 | 26.436 5.3
19:50
32 381491 20.07.2017 36.9198 | 27.4435 6.5
22:31
21.07.2017
33 381868 17:09 36.941 27.332 5
8.08.2017
4 714 957 27.62 A
3 385 07:42 36.9576 6236 5
22.11.2017
35 396691 50:22 37.1206 | 28.5921 5
36 396950 24'2111_'2817 37.1146 | 28.6045 5.1
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Table B.1 (cont’d)

Number | Earthquake ID Date Latitude | Longitude | Magnitude
24.04.2018
7 411017 7. . A
3 0 00:34 37.5836 | 38.5036 5
38 420513 12.09.2018 36.0535 | 31.2135 5.2
06:21
39 431610 20.02.2019 39.6011 | 26.4261 5
18:23
20.03.2019
4 4 1 7.4401 | 294 .
0 33515 06:34 3 0 9.4335 5.5
8.08.2019
41 444581 11:25 37.851 29.584 6
42 447923 26.05.2019 40.8818 | 28.214 5.8
10:59
43 457038 22.01.2020 39.0488 | 27.8443 5.4
19:22
44 457758 24.01.2020 38.3593 39.063 6.8
17:55
25.01.2020
45 458439 16-30 38.374 39.131 5.1
46 466527 23.02.2020 38.436 44.489 5.9
05:52
14.06.2020
47 47 7 . 40.714 Vi
566 14:24 39.365 0 5
48 475841 15.06.2020 39.3678 | 40.7435 5.6
06:51
49 476430 25.06.2020 38.472 44.0285 5.4
10:03
50 476470 26.06.2020 38.7676 | 27.8018 5.5
07:21
51 476668 28.06.2020 36.6563 | 28.2336 5.2
17:43
52 478393 4.08.2020 38.2193 | 38.7243 5.2
09:37
20.09.2020
53 480704 19-08 38.011 34.037 5.1
54 483762 30'11;)_‘52;)20 37.879 26.703 6.6
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Table B.1 (cont’d)

Number | Earthquake ID Date Latitude | Longitude | Magnitude
55 483846 30.10.2020 37.8331 | 26.869 5.1
15:14
5.12.2020
56 490172 12:44 36.0878 | 31.8998 5.2
57 491958 27.12.2020 38.5218 | 39.1813 5.3
06:37
58 494497 1.02.2021 38.9483 | 26.0788 5.1
08:35
59 499838 13.04.2021 36.5425 | 27.2331 5.1
20:28
60 505093 21.06.2021 36.3838 | 27.0975 53
22:14
25.06.2021
61 505564 1828 39.192 | 40.2348 5.2
62 507881 1.08.2021 36.3843 | 27.0805 5.5
04:31
63 508454 3.08.2021 36.267 | 27.0148 5.2
12:38
31.08.2021
64 510421 11:04 39.0133 | 30.1641 5
8.11.2021
1 4 7.861 2.11 A
65 51559 17-43 37.8618 | 3 65 5
19.11.2021
66 516236 12:40 39.8208 | 41.868 5.1
67 516819 30.11.2021 37.7275 | 26.1403 5.1
04:00
68 518758 >.01.2022 36.2016 | 31.3505 5.1
03:21
69 520777 13'3;’22;)22 41.1583 | 43.9213 5.3
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C. USGS DYFI Questionnaire

Table C.1 USGS DYFI questionnaire and weights

Weight | Range | Question
5x 0-1 Did you feel it?
1x 0-5 How would you describe the shaking?
1x 0-5 How did you react?
2X 0-1 Was it difficult to stand or walk?

Did objects rattle, topple over, or fall off
)4 0-1

shelves?
2X 0-1 Did pictures move of get knocked askew?
3x 0-1 Did furniture slide, topple, or become displaced?
5x 0-3 Was there damage to the building?
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D. Anexample of MMI Levels and the Number of Responses from the DYFI
system of Elazig Sivrice Earthquake 2020
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E. Descriptive Statistics of the Available Datasets

The descriptive statistics for linear regression methods and multivariate adaptive
regression splines method are defined in the tables below.

Table E.1 Descriptive statistics of Tiirkiye dataset for linear regression analysis

method
PGA PGV MMI
Number of values 3114 3114 3114
Minimum 0.01066 0.001756 1
Median 4.443 0.5647 3
Maximum 661.8 29.17 9
Range 661.8 29.17 8
Mean 9.571 1.061 3.493
Std. Deviation 20.03 1.63 1.196
Std. Error of Mean 0.3588 0.02922 0.02142
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Table E.2 Descriptive statistics of Eagan-Mediterranean Region dataset for linear

regression analysis method

PGA PGV MMI

Number of values 1515 1515 1515
Minimum 0.1793 0.02643 1
Median 5.402 0.609 3
Maximum 661.8 18.1 8
Range 661.6 18.08 7

Mean 11.75 1.172 3.565

Std. Deviation 24.95 1.763 1.194

Std. Error of Mean 0.6409 0.0453 0.03068

Table E.3 Descriptive statistics of Strike-Slip Region dataset for linear regression

analysis method

PGA PGV MMI

Number of values 1599 1599 1599
Minimum 0.01066 0.001756 1
Median 3.788 0.5429 3
Maximum 282.1 29.17 9
Range 282 29.17 8

Mean 7.512 0.9559 3.423

Std. Deviation 13.55 1.487 1.194

Std. Error of Mean 0.3387 0.03718 0.02986
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Table E.4 Descriptive statistics of Tiirkiye dataset for MARS method
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Table E.5 Descriptive statistics of Aeagan-Mediterranean Region for MARS method
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Table E.6 Descriptive statistics of Strike-Slip region dataset for MARS method
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F. The Correlation Matrix of the AMR Database
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Figure F.1 The correlation matrix of the AMR database
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G. The Correlation Matrix of the Strike-Slip Database
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Figure G.1 The correlation matrix of the Strike-Slip database
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H. P value summary of the Tiirkiye database correlation matrix for MMI-

based relationships of variables

Table H.1 Descriptive statistics of Strike-Slip region dataset for MARS method
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